Invar
Precision instruments benefit from components made of Invar
Invar® 36 is renowned for its remarkably low coefficient of thermal expansion and nickel content that ranges from 36% to 41%. This unique property makes it invaluable in manufacturing applications where precision and stability over temperature changes are crucial. Invar can withstand typical atmospheric and cryogenic temperatures while maintaining good strength which makes it ideal for aerospace applications. Invar’s low expansion rate ensures that these parts retain their dimensions and functionality across a broad range of temperatures.
Curved Plate
A solid curved structure made from Invar.
Deposition rate: 4 lbs./h
Build time: 12 hours
Material: Invar 36
Equipment used: ADDere Custom System
Typical Applications for Invar
Invar is integral in the aerospace industry, used in the construction of aircraft controls and other mechanisms that require exacting tolerances. For instance, it is utilized in the production of components for radio and electronic devices, where consistent performance is essential despite temperature fluctuations. In the realm of optics and laser systems, Invar’s stability helps maintain the alignment of sensitive components. Its versatility extends to the investment casting process, often employed in the manufacture of precision parts for measuring devices, thermostat rods and components for transporting liquefied gases.
For its versatility, it is often employed in the manufacture of precision parts for measuring devices, bimetallic thermostat rods, and components for transporting liquefied gases. The alloy’s low expansion rate ensures that these parts retain their dimensions and functionality across a broad range of temperatures. Invar is used to make optical components, such as lenses, mirrors, and prisms, that need to have precise shapes and sizes. Invar is also used to make electronic components, such as resistors, capacitors, and transistors, that need to have consistent electrical properties. In addition, invar is used to make telecommunication cables and wires, as it can reduce signal loss and interference due to temperature fluctuations. Invar is commonly used where high dimensional stability is required, such as in precision instruments, clocks, seismic gauges, astronomical telescopes, laser systems, capacitor bushings, engine valves and large frame molds.
ADDere’s additive manufacturing can streamline the development and production process of large-scale components made from Invar. Contact us today and see if your manufacturing operations can benefit from ADDere’s additive manufacturing with Invar.
do you want to learn more about ADDere's products and services?
What's going on at ADDere
Latest Blog Posts
3D Printing Metal Structural Components On Demand
Metal structural hardpoints are critical components where significant loads and stresses are concentrated in a vehicle’s frame or body. These include mounting fixturing, tow/lift points,
How to Ensure Quality Control & Traceability in Your Printed Parts
The ADDere laser-wire additive manufacturing process creates complex metal parts by depositing layers of metal wire on a build plate. This process offers many advantages
Manage Your Inventory Efficiently with Additive Manufacturing
Inventory management is a critical aspect of any manufacturing company, where the balance between minimizing stock and ensuring the availability of materials can significantly impact
ADDere Introduces a New Additive System
ADDere is expanding its capabilities by introducing a small format additive system that complements our other two large-scale laser-wire additive systems. The new ADDere system
Life Cycle Management for Additive Manufacturing Automation Systems
ADDere’s additive manufacturing process has many advantages over conventional manufacturing methods, such as reducing material waste, increasing design flexibility, new part functionalities and unique material
ADDere has a Dedicated YouTube Channel
Since ADDere’s inception, ADDere has piggybacked off our parent company, Midwest Engineered Systems, YouTube channel. With the growing interest in metal additive manufacturing the decision